ANALISA DAN PERBANDINGAN AKURASI MODEL PREDIKSI RENTET WAKTU ARUS LALU LINTAS JANGKA PENDEK

Bambang Lareno

Sari


Abstrak
Terdapat banyak algoritma yang dapat dipakai untuk memprediksi arus lalu lintas, namun belum diketahui algoritma manakah yang memiliki kinerja lebih akurat untuk lalu lintas di Indonesia. Algoritma-algoritma tersebut perlu diuji untuk mengetahui algoritma manakah yang memiliki kinerja lebih akurat. Metode yang diusulkan adalah metode perbandingan tingkat akurasi dari algoritma berbasis neural network yang bisa digunakan untuk prediksi data rentet waktu. Algoritma yang akan diuji adalah back Propagation Neural Network (BP-NN), Adaptive Neuro Fuzzy Inference System (ANFIS), Wavelet Neural Network (WNN), dan Evolving Neural Network (ENN), yang digunakan untuk memprediksi arus lalulintas. Masing-masing algoritma akan implementasikan dengan menggunakan MatLab 2009b. Pengukuran kinerja dilakukan dengan menghitung rata-rata error yang terjadi melalui besaran Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) dan Mean Absolute Deviation (MAD). Semakin kecil nilai dari masing-masing parameter kinerja ini menyatakan semakin dekat nilai prediksi dengan nilai sebenarnya. Dalam penelitian ini diketahui bahwa Algoritma ENN memprediksi arus lalu lintas dengan lebih akurat.


Kata Kunci


Prediksi Arus Lalu Lintas, Peramalan Rentet Waktu.

Teks Lengkap:

PDF

Referensi


Jin Wang, Qixin Shi, and Huapu Lu, "The Study of Short-Term Traffic Flow Forecasting Based on Theory of Chaos," IEEE, pp. 869-874, December 2005.

Castro-Neto Manoel, Young-Seon Jeong, Myong-Kee Jeong, and Lee D. Han, "Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions," Expert Systems with Applications: An International Journal, Volume 36 Issue 3, pp. 345-346, 2009.

Young Jung Yu and Mi-Gyung Cho, "A Short-Term Prediction Model for Forecasting Traffic Information Using Bayesian Network," in Third 2008 International Conference on Convergence and Hybrid Information Technology, 2008, pp. 242-247.

Haowei Su, Ling Zhang, and Shu Yu, "Short-term Traffic Flow Prediction Based on Incremental Support Vector Regression," in Third International Conference on Natural Computation (ICNC), 2007, p. Third International Conference on Natural Computation (ICNC).

Wang Xinying, Juan Zhicai, Liu Xin, and Mei Fang, "Research on Grid-based Short-term Traffic Flow Forecast Technology," in 2009 International Conference on Computer Engineering and Technology, 2009, pp. 449-451.

Tao Ji, Qingle Pang, and Xinyun Liu, "Study of Traffic Flow Forecasting Based on Genetic Neural Network," in Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06), 2006.

Yafei Huang, "Short-term Traffic Flow Forecasting Based on Wavelet Network Model Combined with PSO," in 2008 International Conference on Intelligent Computation Technology and Automation, 2008, pp. 249-253.

Huang Hongqiong, George F. List, Tang Tianhao, Alixandra Demers, and Wang Tianzhen, "Hybrid Traffic Flow Forecasting Model Based on MRA," in International Conference on Measuring Technology and Mechatronics Automation, 2009, pp. 222-225.

Yung-Chin Lin, Yung-Chien Lin, and Kuo-Lan Su, "Evolutionary Neural Networks for Time Series Prediction," in Fourth International Conference on Genetic and Evolutionary Computing, 2010, pp. 219-223.

Morariu Nicolae, Iancu Eugenia, and Vlad Sorin, "A Neural Network Model For Time-Series Forecasting," Romanian Journal of Economic Forecasting, pp. 213-233, April 2009.

Gang Tong, Chunling Fan, Fengying Cui, and Xiangzhong Meng, "Fuzzy Neural Network Model Applied in the Traffic Flow Prediction," in Proceedings of the 2006 IEEE International Conference on Information cquisition, Weihai, Shandong, China, 2006, pp. 1229 - 1233.

Guorong Gao and Yanping Liu, "Traffic Flow Forecasting based on PCA and Wavelet Neural

Network," in 2010 International Conference of Information Science and Management Engineering, 2010, pp. 158-161.

Satker P2JN, "Laporan Ruas Liang Anggang - Martapura," Balai Besar Peningkatan Jalan Nasional IV Kalimantan, Banjarmasin, Annual Report 2006-2011.

Suraji Aji, Halim Abdul, and Aditya Chandra, Rekayasa Lalu Lintas, 2008, Diktat Kuliah Fakultas Teknik Universitas Widyagama.

Philip J. Ross, Taguchi Techniques For Quality Engineering: Loss Function, Orthogonal Experiments, Parameters and Tolerance Design, 2nd ed. New York: Mc Graw-Hill Companies, Inc., 1996.

Carlo Vercellis, Business Intelligence: Data Mining and Optimization for Decision Making. Milano, Italy: John Wiley & Sons Ltd, 2009.

P. V. V. K Theja and Vanajakshi Lelitha, "Short Term Prediction of Traffic Parameters Using Support Vector Machines Technique," in Third International Conference on Emerging Trends in Engineering and Technology, 2010, pp. 70-75.

Phang Ming-bao and Zhao Xin-ping, "Traffic Flow Prediction of Chaos Time Series by Using Subtractive Clustering for Fuzzy Neural Network Modeling," in Second International Symposium on Intelligent Information Technology Application, Beijing, 2008, pp. 23-27.

Pei-Chann Chang and Yen-Wen Wang, "Using Soft Computing Methods for Time Series Forecasting," in Series on Computers and Operations Research (Vol.6) - Recent Advances in Data Mining of Enterprise Data: Algorithms and Applications , P.M Pardalos, Ed. Singapore: World Scientific, 2007, ch. 4, pp. 189-246.

The MathWorks, Neural Network Toolbox: User’s Guide ver.7, Mark Hudson Beale, Martin T. Hagan, and Howard B Demuth, Eds., 2010.

Kusumadewi Sri and Hartati Sri, Neuro-Fuzzy: Integrasi Sistem Fuzzy Dan Jaringan Syaraf, 2nd ed.: Graha Ilmu, 2010.

The MathWorks, Fuzzy Logic Toolbox User's Guide.: The MathWorks Inc., 2009.

Suyanto, Evolutionary Computing: Komputasi Berbasis 'Evolusi' dan 'Genetika'. Bandung: Informatika, 2008.




DOI: http://dx.doi.org/10.22303/csrid.6.3.2014.148-158

Refbacks

  • Saat ini tidak ada refbacks.

Komentar di artikel ini

Lihat semua komentar


##submission.copyrightStatement##

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

Kantor Redaksi CSRID. Universitas Potensi Utama. Jl. K.L. Yos Sudarso Km 6,5 No.3-A Telp. (061) 6640525 Ext. 214 Tanjung Mulia Medan 20241